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An empirical function is developed to measure the protein-

like character of electron-density maps. The function is based

upon a systematic analysis of numerous local and global map

properties or descriptors. Local descriptors measure the

occurrence throughout the unit cell of unique patterns on

various de®ned templates, while global descriptors enumerate

topological characteristics that de®ne the connectivity and

complexity of electron-density isosurfaces. We examine how

these quantitative descriptors vary as error is introduced into

the phase sets used to generate maps. Informative descriptors

are combined in an optimal fashion to arrive at a predictive

function. When the topological and geometrical analysis is

applied to protein maps generated from phase sets with

varying amounts of error, the function is able to estimate

changes in average phase error with an accuracy of better than

10�. Additionally, when used to monitor maps generated with

experimental phases from different heavy-atom models, the

analysis clearly distinguishes between the correct heavy-atom

substructure solution and incorrect heavy-atom solutions. The

function is also evaluated as a tool to monitor changes in map

quality and phase error before and after density-modi®cation

procedures.
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1. Introduction

Initial phase information from a crystallographic experiment

often results in an electron-density map of insuf®cient quality

to determine a protein structure. By adjusting the phases with

additional experiments or with computational methods, the

quality of the resultant map can be enhanced. Several

computational methods exploit characteristic properties of

accurate electron-density maps to improve the phases on

which the maps rely. Popular methods include solvent ¯at-

tening (Wang, 1985), skeletonization (Baker et al., 1993),

histogram matching (Zhang & Main, 1990) and non-

crystallographic symmetry averaging (Bricogne, 1974). The

constraints employed by these methods are useful in

improving phases, but they do not fully utilize the unique

properties of well resolved protein electron-density maps.

Previous work in the area of density modi®cation has

focused mainly on restraining electron-density maps to obey

relatively simple properties that can be anticipated easily. For

example, solvent ¯attening takes advantage of the expectation

that the solvent regions will have uniform electron density.

Likewise, direct methods for phasing are based on relatively

simple constraints of positivity and atomicity of electron

density (Hauptman, 1986; Karle, 1986). However, because

proteins are very complex molecules, one might expect their

electron-density maps to obey many complex properties that

may not be anticipated without a systematic study. By visual
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inspection, a skilled observer can identify global and local

features indicative of a protein structure, but to date few

automated computational approaches have been developed to

analyze complex map properties. Two-dimensional histograms

of electron density have been used to evaluate protein map

quality and phase error (Goldstein & Zhang, 1998). Ioerger et

al. (1999) recently described a pattern-recognition algorithm

to interpret electron-density maps in an effort to automatically

build a protein model. Studies by Terwilliger & Berendzen

(1999) have shown that local deviations of electron density in

a map give a good indication of map quality and have

suggested potential applications in evaluating the quality of

phase sets. A more complete and systematic enumeration of

complex properties obeyed by accurate protein electron-

density maps could bring new forces to bear on the problems

of estimating and improving diffraction phases.

The method presented here is based on the premise that

better phases produce electron-density maps with more

protein-like features. Under this assumption, a method that

quanti®es the appropriate properties of an electron-density

map should be able to give an estimate of the accuracy of the

corresponding phase set. By comparing maps, a function based

on this type of analysis could discriminate between manip-

ulations that improve or degrade phase accuracy. This

capability could be used to evaluate candidate heavy-atom

models, the results of density-modi®cation procedures and ab

initio phase calculations.

In this paper, we present a new method to evaluate the

protein-like appearance of electron-density maps based on a

topological and geometrical analysis (TGA). The method is

based on a systematic search for calculable properties of

electron-density maps that correlate with phase error. Many of

the map properties or descriptors examined are informative

and combine to give an empirical function that quanti®es the

overall accuracy of diffraction phase sets. We show how the

function can be used to calculate the relative error in various

phase sets, to identify heavy-atom substructure solutions and

to evaluate the progress of phase re®nement by density

modi®cation.

2. Methods

2.1. Contents of the database and generation of voxel maps

A small database of representative protein structures was

created from the Protein Data Bank (Sussman et al., 1998).

Attention was restricted to structures with a resolution of

2.0 AÊ or better and an R factor less than 20%. From these, we

selected nine protein structures without extraordinarily large

unit-cell dimensions spanning several different crystal systems

(Table 1). From the coordinates, we calculated structure

factors and phases to 3.0 AÊ resolution using the program

SFALL (Collaborative Computational Project, Number 4,

1994).

In order to generate a multitude of phase sets with known

amounts of phase error, random errors were added to the

`correct' (model) phase sets. Phase sets were generated with

average errors ranging from 0 to 90� in 10� increments. In each

phase set, error was introduced as follows. Within each of ®ve

resolution shells, we added a random (uniformly distributed)

phase error to each re¯ection. In order to roughly simulate the

dependence of phase error on resolution, the average overall

phase error was multiplied in each shell by a factor ranging

from 1.4 at the highest resolution to 0.6 at the lowest resolu-

tion. At every level of overall phase error, 25 randomizations

were performed to give 25 different phase sets with similar

overall error. The collection of phase sets was used to calculate

a large family of electron-density maps with known phase

errors; 450 for each of the nine proteins.

Maps were calculated using FFT from the CCP4 package

(Collaborative Computational Project, Number 4, 1994),

normalized using the program AL-MAPMAN (Kleywegt &

Jones, 1996) and represented as voxel maps, as described

Table 1
Database structures.

PDB
code

Space
group Unit-cell parameters (AÊ ,�)

1mbw P6 a = b = 91.2, c = 45.8, � = � = 90.0, 
 = 120.0
1ova P1 a = 62.9, b = 84.7, c = 71.5, � = 87.5, � = 104.0, 
 = 108.5
2fcr P212121 a = 63.6, b = 48.8, c = 56.8, � = � = 
 = 90.0
2ltn P212121 a = 50.7, b = 61.2, c = 136.6, � = � = 
 = 90.0
2lym P43212 a = b = 79.2, c = 38.0, � = � = 
 = 90.0
2lzt P1 a = 28.3, b = 32.0, c = 34.3, � = 88.5, � = 108.6, 
 = 111.9
2plt P32 a = b = 61.8, c = 25.2, � = � = 90.0, 
 = 120.0
3cla R32 a = b = 107.6, c = 123.6, � = � = 90.0, 
 = 120.0
5cpa P21 a = 51.6, b = 60.3, c = 47.3, � = 
 = 90.0, � = 97.3

Figure 1
Decomposition of a continuous-valued electron-density map into a family
of binary maps. Strong, medium and weak levels of electron density are
shown in shades of blue. In a binary map, each grid point is either above
or below the chosen electron-density contour level.



below. In all cases, diffraction data were included to 3 AÊ

resolution and electron-density maps were calculated at a

spacing of 1 AÊ , as nearly as possible. Thus, each volume

element (voxel) is of the order of 1 AÊ on an edge.

Our subsequent analyses are based on binary-valued

electron-density maps. At a given electron-density contour

level (e.g. 0.4�), grid points that are above the cutoff are given

a value of 1, while those below it are given a value of 0. A

binary assignment of density does not completely re¯ect the

diverse and complex features of electron-density maps. In

order to model the information contained in continuous-

valued maps, we generate a series of binary maps from each

continuous-valued map by choosing different contour levels

(Fig. 1). In the calculation presented here, eight different

cutoff values were used to generate eight binary maps from

each continuous-valued map. The eight contour levels were

chosen to be 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 standard

deviations above the mean. Some of these maps represent

volumes smaller than the true protein, while others represent

volumes which are larger. Since the maps derive from inac-

curate phase sets, a wide range of contour levels could be

informative. The present scheme for choosing contour levels is

only one of many that can be employed and is not necessarily

the optimal choice.

2.2. Topological map descriptors

Some of the characteristic properties of protein-like

electron-density maps can be quanti®ed by analyzing contour

surfaces. Using the reduced representation described in the

previous section, we can consider an electron-density map as a

collection of volume elements, or voxels, with each voxel

encompassing one grid point (�1 AÊ on an edge). A particular

contour level de®nes a collection of polyhedral surfaces that

separates those voxels above the contour level from those

below. The topological properties of these polyhedral surfaces

can be evaluated in a straightforward fashion.

Topology provides for a description of the complexity of a

surface. The number of holes or `handles' formed by a surface

is a measure of its complexity. A surface with no handles (e.g. a

sphere) is said to have genus 0. A surface with one handle (a

torus) is said to have genus 1 and so on (Figs. 2a and 2b).

Euler's formula describes the topological complexity of a

polyhedral surface in terms of its vertices, faces and edges. For

a simple three-dimensional object (genus = 0), Euler's formula

is

V � F ÿ E � 2; �1�
where V, F and E represent the number of vertices, faces and

edges of the surface. For complex surfaces,

V � F ÿ E � �; �2�
where � is a topological invariant known as the Euler char-

acteristic. All surfaces with a particular Euler characteristic

have the same genus and are topologically equivalent (i.e. a

cube is topologically equivalent to sphere by a process of

continuous deformation).

The genus is related to the Euler characteristic by

g � 1ÿ �=2: �3�
Therefore, Euler's formula for the genus of a polyhedral

surface is

V � F ÿ E � 2�1ÿ g�: �4�
When examining electron-density maps, we often deal with

collections of disjoint surfaces, each of which has an associated

genus. To calculate the total topological complexity (denoted

here as GT) for a collection of disjoint surfaces, we note that

the genus of each surface, gi, is given by

gi � ÿ
�Vi � Fi ÿ Ei�

2

� �
� 1: �5�

This leads to an equation for the total number of handles (GT)

in a set of disjoint polyhedral surfaces

GT �
Pn

i

gi � ÿ
�V � F ÿ E�

2

� �
� n; �6�

where n is the number of surfaces and V, F and E are the total

numbers of vertices, faces and edges in the contoured binary

map.

When dealing with complex surfaces on a grid, one might

employ a variety of schemes to de®ne the connectivity

between polyhedral volume elements. We employed two

schemes. The ®rst requires two polyhedral surfaces to meet

face-to-face in order to be connected. The second allows

volume elements to meet face-to-face, edge-to-edge or vertex-

to-vertex and still be considered connected (Fig. 3). The two

scenarios lead to slightly different numerical results. For each
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Figure 2
The Euler characteristic as a measure of topological complexity. Three
different objects are described: (a) a cube, (b) a torus and (c) a more
complex object. The Euler characteristic (�) is calculated by the formula
� = V + Fÿ E, where V is the number of vertices, F is the number of faces
and E is the number of edges. The genus of an object is given by the
formula g = 1 ÿ �/2 and is directly related to the number of handles.
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of the two de®nitions of connectivity, we calculate seven

different topological descriptors and the surface area to

volume ratio. These descriptors are as follows.

(i) Total number of surfaces enclosing regions of density

above the cutoff level (npos).

(ii) Total number of surfaces enclosing regions of density

below the cutoff level (nneg).

(iii) Number of disjoint surfaces in the electron-density map

(nsurf).

(iv) Euler characteristic (�) of the electron-density surfaces

(2).

(v) Total complexity (GT) of the electron-density surfaces

(6).

(vi) The largest continuous volume of density above the

cutoff level (surfmax).

(vii) The largest continuous volume of density below the

cutoff level (solvmax).

(viii) Surface area to volume ratio (SA/V).

2.3. Geometric map descriptors

Topology describes global properties. In contrast, if we

focus on local regions, the evaluation of binary-valued

electron-density maps becomes an exercise in geometric

pattern recognition. We expect a map derived from a high-

quality phase set to have a noticeably different distribution of

patterns than any map derived from a poor phase set. If a

statistically signi®cant difference in the distribution of patterns

exists between maps generated from accurate and inaccurate

phase sets, then an algorithm that measures these differences

could quantify the accuracies of various phase sets.

To measure the local distribution of electron density found

in maps, three templates were chosen under which we calcu-

lated the fractional occurrence of all possible binary patterns.

The ®rst template is a cube, two voxels in length, width and

height (Fig. 4a). The second is also a cube, but one in which the

voxels are not adjacent (i.e. the corner voxels in a 3 � 3 � 3

cube). We denote this template type as 2 � 2 � 20. This

particular template allows a larger region of the map to be

characterized without introducing an unreasonably large

number of distinct patterns. The third is a slab three voxels in

length and width and one voxel in height (Fig. 4b). The voxels

that make up a template are considered to be either full or

empty (i.e. either above or below the chosen contour level).

The total number of binary patterns that can be derived

from a 2 � 2 � 2 cube is 256. However, for the present

application, patterns related by a rotation are taken to be

equivalent. Though it is not strictly true for non-orthorhombic

unit cells, we assume that the template is essentially cubic in

shape and so conforms to cubic (octahedral) symmetry. Under

this relation, there are 23 distinct patterns for a 2� 2� 2 cube

(Fig. 4a). For the 3 � 3 � 1 slab, the 512 possible patterns

reduce to 102 distinct patterns by rotational equivalence under

D4 symmetry (Fig. 4b). For all three of these search templates,

the number of unique patterns is small enough that one can

expect a statistically signi®cant population for each unique

pattern. In addition, the three templates are independent

enough in shape that they might capture different information

about the tendency of different patterns to appear in electron-

density maps.

The frequency of occurrence of each of the unique binary

patterns for the three templates is calculated in the following

manner. The template is moved systematically through the

map. As the template is moved through the map, the

frequencies of the geometric patterns are tabulated. To

normalize for unit cells of different size, we convert the

frequencies to fractional values as follows. The possible

patterns are grouped into subclasses, each comprised of the

unique patterns that contain an equal number of bits `on'. The

fractional occurrence of each pattern is then calculated rela-

tive to the other patterns in its subclass. This analysis is

performed for each of the three templates described above.

Eight additional composite parameters are also calculated

in an attempt to capture any cooperative behavior between

select patterns. For each of the 2 � 2 � 2 templates, three

parameters are calculated. Letting Ni denote the total number

of observed patterns with i bits `on', these composite para-

meters are: N4/N8, (N0N8)/(N4N4) and (N0N8)/(N1N7). Finally,

the frequency with which a 3 � 3 � 3 or 5 � 5 � 5 template

occurs with no bits `on' is also calculated.

2.4. Generation of a phase-error-predicting formula

For every map generated in our simulations, the topological

and geometric descriptors described in the above sections

were calculated and stored. A linear function relating the

Figure 3
Removal of surface intersections. In order to calculate the Euler
characteristic properly, surface intersections must be eliminated. Two
alternate de®nitions of connectivity in a binary electron-density map are
shown. An object can either be connected only if two volume elements
meet face to face (type 1) or if the two volume elements touch face-to-
face, edge-to-edge or vertex-to-vertex (type 2).



measured descriptors of a given map to a calculated phase

error is de®ned as

'calc
j �

P172

i�1

�wij�Pij ÿ Po
ij��; �7�

where j is one of the eight binary cutoff levels for conversion

to the binary electron-density map, wij is a linear weight

associated with the ith map descriptor for the jth binary cutoff

level, Pij is the value of the ith map descriptor at the jth binary

cutoff level and Po
ij is the value of the corresponding descriptor

at zero phase error. In our test calculations, we have assumed

that the target values Po
ij are known precisely. In real appli-

cations, this may not be the case. However, uncertainties in Po
ij

only affect the calculated phase error by an additive constant,

so relative changes in phase error are unaffected. These

changes in calculated phase error are of primary interest here.

There are 172 descriptors: 16 topological, 23 for each of the

2 � 2 � 2 templates with different spacings, 102 for the

3 � 3 � 1 template and eight descriptors based upon the

cooperative behavior of selected geometric patterns. The

descriptor weights wij were calculated in the following manner.

The descriptor values were tabulated from the family of maps

described in the previous section. At each of the eight contour

levels, there are 4050 maps in our database with varying

degrees of error (18 average phase errors� 25 randomizations

� nine proteins). Weights for the descriptors were derived via

least-squares ®tting the calculated phase errors from the large

number of maps to the known values by minimizing (at every

cutoff level) the residual errors in the set of equations

P172

i�1

�Wij�Pij ÿ Po
ij�� ÿ 'known

j � 0: �8�

Among the descriptors tested, not all are necessarily inde-

pendent. The lack of linear independence would cause the

linear least-squares equations to be degenerate. To overcome

any possible degeneracy, we employed eigenvalue ®ltering (a

form of singular value decomposition) during the derivation of

weights. From this ®ltering method, the top 50±70 components

were used in the algorithm. This form of ®ltering removes

combinations of parameters that contribute little to the phase-

prediction formula.
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Figure 4
An enumeration of the distinct binary patterns possible on different symmetric templates. (a) The eight elements of a 2 � 2 � 2 template allow 256
binary patterns. Under the cubic (octahedral) rotational symmetry of the template these reduce to 23 unique binary patterns, organized by the number of
bits containing density. (b) The 102 unique binary patterns for a 3 � 3 �1 template (under D4 symmetry) arranged by the number of bits containing
density.
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3. Results and discussion

3.1. Individual parameters

Some of the map properties investigated showed strong

correlations with phase errors, while others did not. As a

simple gauge of predictive power for each descriptor, a

correlation coef®cient between the descriptor value and the

known phase error was calculated over the set of maps at the

appropriate binary cutoff level. Fig. 5 shows a plot of two

geometric descriptors versus phase error ± one that strongly

correlates with the error introduced to the phase sets and one

that does not. Many of the geometric descriptors show

correlations with phase error in excess of 0.9 (or less than

ÿ0.9). Those with the highest correlation coef®cients (�0.90)

are listed in Fig. 6.

The results of the geometrical analysis show general trends

that might be expected. For example, patterns that are more

connected or more compact (e.g. a box rather than a

checkerboard) tend to be observed less frequently as phase

error is increased, while the patterns that are more complex or

disjointed tend to be more frequent with increasing phase

error. This trend is most evident when examining pairs of

patterns that differ by one bit or have the same number of bits

`on' but in a different arrangement (2 � 2 � 2: #19 versus #21,

#7 versus #13, #7 versus #8, #6 versus #7; 3 � 3 � 1: #99 versus

#100, #32 versus #52). Beyond some general trends, however,

the complexity of Fig. 6 makes it clear that the detailed results

of the geometrical analysis could not have been predicted in

advance.

Among the topological descriptors, the Euler characteristic

(�), the total topological complexity (GT) and the surface area

to volume ratio capture the protein-like features in an

electron-density map best (Table 2). The magnitudes of these

descriptors increase with the addition of phase error at low

binary cutoff levels, but decrease with increased phase error at

higher cutoff levels. The opposite trend is observed for the

number of discrete surfaces (nsurf) and the volume of the

largest continuous region of low density. As before, while

some of the observed trends can be rationalized, others

cannot. A strength of the present approach is that it makes no

a priori assumption about what patterns or properties should

be favored.

3.2. Analysis of the function

As described in x2 (equations 7 and 8), the descriptors that

were independent of each other were combined to give a

single function. The function described in the previous section

was tested for self-consistency by withholding one of the

structures from the database and then recalculating the

descriptor weights. With these unbiased weights, the function

was used to test descriptors extracted from maps of the

withheld structure in order to calculate predicted errors in the

phase sets. More speci®cally, to calculate the predicted phase

error 'calc, the descriptors from a map of the query protein

(Pij) were used with weights (wij) derived from the `jack-

knifed' database, while the target values of each descriptor at

zero phase error (Po
ij) were taken from the query protein.

Typically, for average phase errors spanning the entire range

(0±90�) this analysis yielded 8� RMSD error in the estimation

of the phase error. A plot of the calculated versus the observed

average phase error shows that the function is roughly

biphasic, with two approximately linear regions, separated by

a transition near 60� (Fig. 7).

To optimize the predictive quality of the function, linear

weights were calculated separately for several phase-error

ranges. The results of these analyses are shown in Table 3.

Subsequent analyses utilized weights calculated for the linear

region between 0 and 60� average phase error, where the

RMSD error in phase-error estimation is only 3.3�.

3.3. Heavy-atom searches

We tested the ability of the method (referred to hereafter as

TGA) to identify correct heavy-atom positions given native

diffraction amplitudes and amplitudes from an isomorphous

heavy-atom derivative. For the heavy-atom searches, SIR data

from a platinum derivative of the ycaC gene product from

Escherichia coli (Colovos et al., 1998) were used to generate

Figure 5
Examples of map descriptor values versus phase error. (a) A geometric
descriptor that varies signi®cantly with the addition of phase error to an
electron-density map [the normalized occurrence of pattern #4 of the 3 �
3 � 1 template, binary cutoff level #5 (1.2�), protein = 5cpa]. (b) A
geometric descriptor that does not vary predictably as noise is added to
the map [normalized occurrence of pattern #13 of the 3� 3� 1 template,
binary cutoff level #1 (0.4�), protein = 5cpa].



trial maps. The derivative contains two sites per asymmetric

unit in space group P4212 and gives very good phase infor-

mation (for data to 2.0 AÊ phasing power = 1.88, Rcullis = 0.63).

All calculations were performed using data to 3.0 AÊ resolu-

tion. Phases were calculated from the heavy-atom positions

using the program MLPHARE (Otwinowski, 1991) and the

resulting electron-density maps were examined as described in

the preceding sections.

We began by using only one of the two heavy-atom sites.

According to the TGA method for estimating phase error

from electron-density maps, a single correct heavy-atom

position had a calculated phase error that was 1.8� less than

the mean of phase errors from maps generated from randomly

chosen heavy-atom sites. For this calculation, the weights were

derived from the parameters of the nine database structures.

Given that there are two heavy-atom sites in the asymmetric

unit, it is not surprising that a map generated from a single

heavy-atom site did not give a calculated phase error drasti-

cally different from the noise level.

Further calculations were performed using two sites where

one of the two heavy atoms was ®xed at its correct position

while the other was allowed to vary. In this case, the correct

heavy-atom position gave a map whose calculated phase error

was 5.7� less than the mean calculated phase errors of maps

generated from phases where both sites were randomly posi-

tioned (Fig. 8). The performance of TGA with heavy-atom

data suggests that it may be useful in evaluating potential

heavy-atom models.

In order to compare the discriminatory power of TGA with

more traditional ideas from density modi®cation, the heavy-

atom calculations above were repeated and the same maps

were evaluated with a histogram-matching protocol. We

calculated a correlation coef®cient between the electron-

density histogram of each candidate map and the histogram

for an ideal map (Zhang & Main, 1990). Following the same

reasoning as with TGA, if a map derives from accurate phases,

then its density histogram should be highly correlated with the

ideal histogram. With the same two-site heavy-atom model as

before, the histogram correlation is 5.1� higher than the

average for maps based on two random sites. The apparently

comparable power of TGA and histogram matching suggests

that TGA might be useful as a density-modi®cation tool if it

can be implemented as an iterative procedure or combined

with existing density-modi®cation

procedures.

3.4. Evaluating the progress of
density modification

A second test was performed to

assess whether or not the TGA

function could accurately discri-

minate between phase sets arising

from different methods of density

modi®cation. The platinum

SIRAS data (using both sites) of

the ycaC gene product was

subjected to either solvent ¯at-

tening, histogram matching,

solvent ¯attening and histogram

matching, symmetry-averaging

and histogram matching, or

solvent ¯attening, averaging and

histogram matching, with the
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Table 2
Topological parameters that correlate best with change in phase error.

Parameter values increase as phase error increases, except for the parameters
preceded by an asterisk. The choice of de®nition for a connected surface is
denoted by a subscript and is fully described in the text. Topological
parameters in this table have a correlation coef®cient greater than 0.90 with
respect to phase error.

Binary cutoff
level Topological parameters

1 GT(1), �(1), GT(2), surfmax(1), *solvmax(1), *solvmax(2),
surfmax(2), �(2), SA/V

2 GT(2), *solvmax(2), surfmax(2), �(2), SA/V, �(1)

3 SA/V, *solvmax(2), surfmax(2)

4 SA/V
5 *�(1), GT(1), SA/V
6 *�(1), *�(2), *GT(1), solvmax(2)

7 solvmax(2), *�(1), *�(2), *GT(1)

8 solvmax(2), *SA/V, *�(2), *�(1), *GT(1), nsurf(2), npos(2)

Table 3
Error in estimation of average phase error.

�' is an estimation of average phase error. �'obs is based on the difference
between the phases from the ®nal re®ned atomic model and the phases after
different stages of density modi®cation. �'calc is the predicted phase error
from map evaluation by the TGA method.

Chosen range for
average phase error (�)

RMSD error in estimation of
average phase error (�)

0±90 7.6 � 1.9
0±60 3.3 � 0.9
20±60 3.4 � 0.9
60±90 11.3 � 6.2

Figure 6
The geometric patterns with the strongest correlation to phase error. The table is organized by template
type (3� 3� 1, 2� 2� 2 and 2 � 2� 20) and by binary cutoff level. The occurrence of a pattern increases
as phase error is increased, except for cases denoted with an asterisk, where the trend is reversed.
Geometric parameters listed in this ®gure have a correlation coef®cient greater than 0.90 with respect to
phase error.
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program DM (Cowtan, 1994). The resulting electron-density

maps were subjected to the estimated phase-error calculation.

For comparison, an estimate of the true error in each phase set

was obtained by assuming that the phases calculated from the

®nal atomic structure are essentially correct (Table 4). In all

cases, the calculated phase error went down, as a result of

density modi®cation. Furthermore, the TGA function was

able to correctly predict the relative accuracy of the various

phase sets produced by different density-modi®cation

schemes.

On closer inspection, it is evident that the TGA function

indicates a greater improvement in phase accuracy during

density modi®cation than is calculated by comparing with ®nal

model phases. In fact, this exaggerated drop may re¯ect

dif®culties pointed out earlier in establishing the correct (zero-

error) map descriptors for a perfect map. On the other hand,

the phase improvement calculated by the TGA method may

not be far off from the correct value. It should be kept in mind

that the model phases may be signi®cantly different from the

true (unknown) phases. This residual error could account for

much of the discrepancy between the two estimates of ®nal

phase error. In any case, it seems clear that the TGA method

could provide valuable feedback during density-modi®cation

procedures. For instance, during symmetry averaging one

might monitor the drop in calculated phase error to help

decide whether the non-crystallography symmetry operators

have been de®ned accurately.

3.5. Conclusions

The protein-like appearance of electron-density maps can

be assessed by a function based on a topological and geo-

metrical analysis (TGA). The present method was developed

from a systematic search for properties of electron-density

maps that correlate with phase error. A subset of the topo-

logical and geometrical map descriptors examined were found

to be informative and were used to build an empirical function

that measures the accuracy of diffraction phase sets. The

results demonstrate that it is possible to automatically eval-

uate electron-density maps and accurately distinguish between

phase sets of varying quality.

In the present implementation, it was possible to determine

the relative quality of maps created from experimental data

and various heavy-atom substructure models. Even better

results might be obtained if the function was optimized to

discriminate between correct and incorrect heavy-atom

Table 4
Comparison of observed and calculated phase errors after various
density-modi®cation procedures.

Phase set �'obs (�) �'calc (�)

SIRAS 44.1 46.1
SIRAS plus solvent ¯attening alone 40.0 37.3
SIRAS plus histogram matching alone 40.9 29.3
SIRAS plus solvent ¯attening and

histogram matching
39.9 24.3

SIRAS plus NCS averaging and
histogram matching

34.2 16.1

SIRAS plus solvent ¯attening, NCS
averaging and histogram matching

31.2 12.2

Figure 7
Plot of known versus calculated average phase error using an empirically
derived map-evaluation function. The calculated phase errors for each
map are based on weights derived from a jack-knifed database in order to
avoid bias.

Figure 8
Plot of relative phase error (predicted with the map-evaluation function)
versus distance of a heavy atom from its correct position. One heavy atom
was placed at the correct position and another was systematically moved
about the plane that contains the correct position for the second site. For
each heavy-atom con®guration, an electron-density map was calculated
and the empirical function was used to estimate the phase error. The plot
shows the number of standard deviations from the mean calculated phase
error (over all maps) versus the Euclidean distance of the second atom
from the correct site. The correct site gives a calculated phase error that is
5.7 standard deviations below the mean and is denoted by a star in the
plot.



substructure solutions, as typically provided by automated

Patterson searching routines. Additionally, given that even

exceptional MIR maps do not possess ideal protein-like

electron-density characteristics without density modi®cation,

the heavy-atom searching routine could be further optimized

if it were trained solely on experimentally derived maps.

Keeping this in mind, it is not surprising that the function

performed unusually well when tested on various density-

modi®ed maps. Since density-modi®cation techniques are

designed to make electron density appear more ideal, the

effect of density modi®cation on the behavior of the function

seems to be even more marked than the effect of altering the

heavy-atom substructure.

The TGA method of evaluation could be useful in

numerous applications, such as validating non-crystallographic

symmetry operators in symmetry-averaging and automating

HA substructure solution. The estimates of phase error could

also help to provide more accurate ®gures of merit than those

typically returned with current density-modi®cation proce-

dures. Finally, although it has not been so tested in this work,

the function might serve as a target function for density

modi®cation or (at lower resolutions) as a tool for ab initio

phasing of macromolecular structures. A web-based version of

the TGA algorithm that compares the quality of two maps is

available at http://www.doe-mbi.ucla.edu/people/colovos/

TGA.
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